Apophis Observational Opportunities from Now till the 2029 April 13 Close Approach, to Improve Solution for Its Spin State

Petr Pravec¹ and Josef Ďurech²

¹ Astronomical Institute AS CR, Ondřejov, Czech Republic ² Astronomical Institute of the Charles University, Prague, Czech Republic

> Apophis T-5 Years meeting ESTEC, Noordwijk, Netherlands 2024 April 22

Apophis spin and shape modeling

Apophis – a slow rotating asteroid in non-principal axis spin state.

Its rotation and precession frequencies, and some their linear combinations are low – data spanning long intervals (many nights) needed to construct its spin and shape model.

The lightcurve data taken from 2012-12-23 to 2013-04-15 (55 nights)
→ the first spin and convex-shape model (Pravec et al. 2014).
The radar data taken from 2012-12-22 to 2013-02-20 (11 nights)
→ a similar shape model, and suggested possible bifurcation (Brozovic et al. 2018).

References: Pravec et al. (2014) Icarus 233, 48-60; Brozovic et al. (2018) Icarus 300, 115-128

Apophis lightcurve characteristics (1)

Three main frequencies:

27.38⁻¹, 30.56⁻¹ and 263⁻¹ h⁻¹.

(The first and the last are P_{ϕ}^{-1} and P_{ψ}^{-1} in the Kaasalainen 2001 convention.)

The long P_{ψ} is because Apophis is dynamically not far from a prolate spheroid: $b_{dyn}/c_{dyn} = 1.06$

Table 2

Parameters of the Apophis model with their estimated admissible uncertainties (corresponding to 3σ confidence level).

_		
	Fitted parameters	
	$\lambda_L(^\circ)$	250 ^a
	β_L (°)	-75
	ϕ_{0} (°)	152^{+173}_{-64}
	ψ_0 (°)	14^{+44}_{-11}
	P_{ψ} (h)	263 ± 6
	P_{ϕ} (h)	27.38 ± 0.07
	$I_a \equiv I_1 / I_3$	$0.61^{+0.11}_{-0.08}$
	$I_b \equiv I_2/I_3$	$0.965^{+0.009}_{-0.015}$
	Derived parameters	
	$\left(P_{\phi}^{-1} - P_{\psi}^{-1}\right)^{-1} = P_1$ (h)	30.56 ± 0.01
	θ_{\min} (°)	12 ± 4
	θ_{\max} (°)	55^{+9}_{-20}
	θ_{aver} (°)	37^{+6}_{-14}
	$a_{\rm dyn}/c_{\rm dyn}$	1.51 ± 0.18
	$b_{\rm dyn}/c_{\rm dyn}$	1.06 ± 0.02
	$a_{\rm shp}/c_{\rm shp}$	1.64 ± 0.09
	$b_{\rm shp}/c_{\rm shp}$	$1.14^{+0.04}_{-0.08}$
	E/E ₀	1.024 ± 0.013
-1		

The angles ϕ_0 and ψ_0 are for the epoch JD 2456284.676388 (=2012 December 23.176388 UT), light-travel time corrected (i.e., asterocentric).

 E/E_0 is a ratio of the rotational kinetic energy and the lowest energy for given angular momentum, defined as $E_0 = L^2/(2I_3)$.

^a The major and minor semiaxes of the uncertainty area of the direction of \vec{L} are 27° and 14°, respectively, see Fig. 4.

Reference: Pravec et al. (2014) Icarus 233, 48-60

Apophis lightcurve characteristics (2)

Significant harmonics in Apophis's lightcurve up to the 3rd order.

The highest frequency: $(3*27.38^{-1} + 3*30.56^{-1}) = 4.81^{-1} h^{-1}$.

Need to observe Apophis's lightcurve with a sampling of ~2 hours. A denser sampling does not provide a significant additional information.

References: Pravec et al. (2005) Icarus 173, 108-131; Pravec et al. (2014) Icarus 233, 48-60

Apophis LC observations – requirements

- To construct a good model for Apophis's spin and shape (in one apparition), we need lightcurve observations with
- Coverage: Tens of nights over an interval of several weeks (a few times P_{ψ})
- Cadence: One (normal) photometric data point per 2 hours
- Photometric accuracy of each normal photometric data point: 0.03 mag

Limited data sets, covering shorter time intervals, will be useful in combination with data from other years (in a joint modeling using data from many years).

To get the needed long coverage, a collaboration of several telescopes needed. Key for the success: Consistent calibrations of the data taken from different telescopes on many nights (to get an internally consistent, homogeneous dataset).

The relatively sparse sampling (1 data point per 2 hours) makes the Apophis observations suitable as a supplementary program to other (semi/quasi-continuous) observing programs at suitable telescopes.

Apophis observational windows

Photometric observations possible in three observational windows (before the 2029 April 13 close approach):

- 2027 February-April
- 2027 December-2028 June
- 2028 October-2029 April 13

Taking data in each of the three observational windows will be probably needed to get a unique model for Apophis over all the years 2012-2029. (See the previous talk by J. Ďurech.)

Table 1: Observational windows for Apophis					
Date of	Max.El.	Sol.Ph.	V	App.Dur.	
Max.El.	(°)	(°)	(mag)	(days)	
2025-05-23	19	19	21.4	0	
2026-04-18	39	38	21.6	0	
2027-03-17	61	53-60	21.1-21.5	-24/+27	
2028-02-14	90	65-100	19.2-20.7	-70/+137	
2029-04-13	167	13-98	3.2-20.1	-170/+0	
Note: Apparition Duration and the ranges of Solar					
Phase and V magnitude (from MPC) are given for					
intervals with Solar Elongation $> 60^{\circ}$.					

The 2027 February-April window

Apophis observable with large (4+m) northern-hemisphere telescopes in the evening sky.

Each telescope may take only 1 or 2 normal data points on one night → observations from a few telescopes spread in longitude on a number of nights (in evening hours) needed.

However sparse and limited the obtained data may be, it probably will be critical data for getting a unique spin and shape model for Apophis in a joint modeling of the whole data set 2012-2029.

Table 1: Observational windows for Apophis				
Date of	Max.El.	Sol.Ph.	V	App.Dur.
Max.El.	(°)	(°)	(mag)	(days)
2025-05-23	19	19	21.4	0
2026-04-18	39	38	21.6	0
2027-03-17	61	53-60	21.1-21.5	-24/+27
2028-02-14	90	65-100	19.2-20.7	-70/+137
2029-04-13	167	13-98	3.2-20.1	-170/+0
Note: Apparition Duration and the ranges of Solar				
Phase and V magnitude (from MPC) are given for				

intervals with Solar Elongation $> 60^{\circ}$.

The 2027 December-2028 June window

Observations with medium sized (2-4m) telescopes in both hemispheres needed.

One telescope can observe Apophis for only a ~couple hours in the evening sky, but observations spread over the 7 months would provide data for checking stability of the spin and shape solution.

Though a single telescope may take only 1 or 2 normal data points on one night, a coordinated photometric campaign involving a few telescopes spread in longitude would provide sufficient coverage for solving Apophis's spin and shape model.

Taking data at the extremely high solar phases (100°) in December 2027 may be important for successful modeling (for the possible concavities of Apophis's figure).

Table 1: Observational windows for Apophis				
Date of	Max.El.	Sol.Ph.	V	App.Dur.
Max.El.	(°)	(°)	(mag)	(days)
2025-05-23	19	19	21.4	0
2026-04-18	39	38	21.6	0
2027-03-17	61	53-60	21.1-21.5	-24/+27
2028-02-14	90	65-100	19.2-20.7	-70/+137
2029-04-13	167	13-98	3.2-20.1	-170/+0
Note: Apparition Duration and the ranges of Solar				
Phase and V magnitude (from MPC) are given for				

intervals with Solar Elongation $> 60^{\circ}$.

The 2028 October-2029 April 13 window

Medium sized (2-4m) northern hemisphere telescopes needed at the beginning of the apparition.

Since January 2029 Apophis will be bright enough for photometry with small (1-m class) telescopes (preferably in the southern hemisphere for the negative declinations of Apophis).

A thorough coordinated campaign will provide rich data for getting a final spin and shape model for Apophis.

Taking data at the extremely high solar phases (98°) in October 2028 may be important for successful modeling (for the possible concavities of Apophis's figure).

Table 1: Observational windows for Apophis					
Date of	Max.El.	Sol.Ph.	V	App.Dur.	
Max.El.	(°)	(°)	(mag)	(days)	
2025-05-23	19	19	21.4	0	
2026-04-18	39	38	21.6	0	
2027-03-17	61	53-60	21.1-21.5	-24/+27	
2028-02-14	90	65-100	19.2-20.7	-70/+137	
2029-04-13	167	13-98	3.2-20.1	-170/+0	
Note: Apparition Duration and the ranges of Solar					
Phase and V magnitude (from MPC) are given for					
intervals with Solar Elongation $> 60^{\circ}$.					

Conclusions

A dedicated Apophis photometry campaign in the three observational windows in 2027-2029 needed to produce lightcurve data that we will use for a joint modeling with the 2012-2021 data.

There will be certain challenges: The need to use a number of telescopes of various sizes over many nights (but with a relatively low cadence, providing a relatively sparse sampling) and with consistent calibrations so that we get a homogeneous dataset.

With such data, we will get a unique spin and shape model for Apophis and check its long-term stability.