Věda a výzkum

Sluneční oddělení - archiv publikací

2024

Rostoucí zájem o hvězdné erupce podnítil různé přístupy k modelování pozorovaných toků v erupcích. Radiačně-hydrodynamické simulace naznačují mnohem větší hustoty v porovnání se slunečními erupcemi. Vznik vodíkových rekombinačních kontinuí při takto rozdílných hustotách řídí fyzika opticky tenkého až opticky tlustého plazmatu. Různí autoři představili jednoduché metody pro analýzu fotometrických data z přístrojů Kepler nebo TESS pro takto rozdílné fyzikální podmínky. V tomto článku shrnujeme obecné poznatky o těchto metodách a počítáme rekombinační spektra vodíku v podmínkách vysokých elektronových hustot. Ukazujeme teoretický kontrast s ohledem na kontinuum klidných hvězd pro dvě charakteristické hvězdy tříd G a dMe. Na základě toho rozlišujeme tři režimy formování kontinua a diskutujeme o použitelnosti různých jednoduchých modelů.

P. Heinzel 2024, MNRAS, 532, L56

Vznik penumbry slunečních skvrn je stále nedostatečně objasněn. V této práci studujeme oblasti na okraji sluneční póry, ve kterých vzniká penumbra. Před vznikem penumbry jsme ve studovaných oblastech našli různé vlastnosti magnetických a rychlostních polí. Mechanizmus formování penumbry je však všude stejný. Penumbrální filamenty s Evershedovým prouděním se začínají formovat na hranici umbry a rostou radiálně především směrem ven s tím, jak se penumbrální filamenty časem prodlužují.

M. García-Rivas, et al. 2024, Astronomy & Astrophysics, 686, A112

Jasná zakončení světlých vláken v penumbře slunečních skvrn, penumbrální zrna, se zdánlivě pohybují směrem dovnitř, k umbře, nebo ven, směrem od umbry. Penumbrální zrna jsou místa, kde se horký plyn vynořuje z oblasti pod fotosférou. Použili jsme spektropolarimetrická pozorování pěti skvrn, abychom porovnali náklon magnetického pole v penumbrálních zrnech a jejich okolí. Ukázalo se, že asi v polovině zrn, která se pohybují dovnitř, je náklon větší než v okolní penumbře a v polovině zrn, která se pohybují ven, je menší než v okolí. Opačný poměr náklonů byl pozorován jen v pětině případů. Existuje tedy statistická závislost směru zdánlivých pohybů penumbrálních zrn a náklonu magnetického pole v penumbře.

M. Sobotka, et al. 2024, Astronomy & Astrophysics, 682, A65

2023

Analyzovali jsme rádiová pozorování záblesku typu II, který má nesmírně bohatou a komplexní spektrální morfologii. Tu jsme použili ke studiu turbulence elektronové hustoty ve sluneční koróně. Poprvé jsme tak získali vlastnosti hustotní turbulence v koronálním streameru. Cílem je vyvinout metody pro rutinním sondováním vlastností hustotní turbulence v koróně.

A. Koval, et al. 2023, The Astrophysical Journal, 952, id.51

Tato studie zkoumá hvězdné erupce na chladných hvězdách, konkrétně se zaměřuje na hvězdu dMe AD Leo, která byla pozorována pomocí Perkova dalekohledu v Ondřejově. Hvězdné erupce, známé svými energetickými událostmi ve hvězdných atmosférách, často vykazují asymetrie ve spektrálních čarách, přičemž modré asymetrie jsou obvykle spojovány s výrony koronální hmoty a původ červených asymetrií zůstává nejasný. Pro zkoumání těchto červených asymetrií vědci modelovali emise čáry Hα z rozsáhlého oblouku chladných smyček erupcí pomocí non-LTE přenosu záření, přičemž zahrnuli rozložení rychlostí jednotlivých "koronálních dešťových mračen". Syntetické profily Hα vygenerované z modelu koronálního deště měly zesílená červená křídla, která přesně odpovídala pozorováním, což naznačuje, že koronální déšť by mohl být pravděpodobným vysvětlením červených asymetrií pozorovaných ve hvězdných erupcích na AD Leo.
J. Wollmann, et al. 2023, Astronomy & Astrophysics, 669, A118

Koronograf Metis na sondě ESA Solar Orbiter vyvinulo italsko-německo-české konsorcium. Poprvé je schopen pozorovat sluneční korónu současně ve viditelném světle a v čáře Lyman-alfa. Představujeme unikátní pozorování velké eruptivní protuberance a demonstrujeme jednoznačnou detekci emise neutrálního helia v čáře D3. Ukazujeme, jak se protuberance jeví v polarizovaném světle, a zkoumáme potenciál systému Metis pro detekci magnetických polí protuberancí.

P. Heinzel, et al. 2023, The Astrophysical Journal Letters, 957, 10H

Zatímco název "protuberanční tornáda" naznačuje prudkou dynamiku, analogie s tornádem silně koliduje s obvyklým paradigmatem magnetické struktury slunečních protuberancí. V tomto přehledovém článku jsme tento dlouholetý paradox vyřešili. Došli jsme k závěru, že "protuberanční tornáda' se neliší od ostatních stabilních protuberancí. Dojem sloupovité siluety a spirálovitých pohybů je pouze důsledkem projekčních efektů v kombinaci s malo-škálovou dynamikou.

S. Gunár, et al. 2023, Space Science Reviews 219:33