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Introduction

This text aims to contribute to understanding, why we have so much different flux density vs. uv
distance  for  12-m  and  7-m  simultaneous  observations  of  Mars.  In  particular,  it  addresses  the
discrepancy between the observed and simulated uv flux density for 12-m array as found in the analysis
by Hideo Sagawa. 

I think, the first point – the fact that we have somewhat different uv flux densities for 7-m and 12-m
arrays – is clear now: Simply, the Mars disc does not fit completely to the 12-m primary beam, so we
are integrating the brightness from the lesser angular area (NB: One could, on the other hand, expect
that we have a stronger signal from bigger antenna, but the plotted signal is flux density, so it is already
scaled-down by the antenna collecting area).  The remaining problem is,  why this  difference is  so
unexpectedly large – the simulations by Hideo show that the jump between the 7m and 12m arrays
should not be so big and that the expected (simulated) 12m uv power is by factor ~1.3 higher than that
observed.

The latter issue (the missing factor 1.3 between observed and simulated 12m data) has been found by
studying the ratio Fsim(uv_dist)/Fobs(uv_dist) in a broad range of the uv distances. In this plot by Hideo,
there is another remarkable feature in addition to the fact that the average/median value of the ratio is
not equal to 1.0: It is the slope of the function in between the null-points of the uv flux density – see the
following Fig. 1 (taken from Hideo’s presentation), where the slope is emphasized by the green line:

Fig. 1: Sim vs. obs ratio. Green lines mark the unexpected slope.

Normally, one would expect that we have by-parts constant (and equal to 1.0) ratio between the null
points interrupted by vertical lines close to the null-points (because of indefinite limit of the type ‘0/0’
and presence of noise in the observed data). Actually, exactly this can be seen in Fig. 4 further. Where
does this slope come from? I think it is because the interferometric structure (the flux density vs uv-
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distance  plot)  differ  for  simulated  and  modelled  12-m data,  namely  the  null  points  of  those  two
functions  differ  –  as  marked on the  next  figure,  again  taken from the  Hideo’s  analysis  –  see  the
following Fig 2:

As  one  can  see,  the  structures  are  somewhat
displaced/scaled  in  the  UV-distance  axis.  Just  a
forward note: The structures (namely position of the
null points) of the  simulated data for 7m and 12m
arrays  differ,  too.  But  in  view that  the  structures
depend  on  both  the  Mars  disc  size  and  antenna
diameter  –  see  below  –  this  difference  is  not  a
mystery.  

To  sum up,  we  have  actually  two,  likely  closely
related questions: (1) Why the simulated flux is (in
average) by a factor ~1.3 higher than the observed
one, and (2), why the null points – and  the entire
interferometric  structure  (i.e.,  the  flux  density  vs
uv-distance plot) – differ between the simulated and
the observed data, what, consequently, results into
the positive slopes in the sim/obs flux density ratio.

So which parameters define the interferometric structure?

In order to answer the question I did a simple analytical calculation in 1D – this means like we had just
a right-ascension/hour-angle ‘θ’ on the sky and corresponding Fourier component ‘u’. The reasons,
why  in  1D:  (1)  I  am  not  brave/capable  enough  to  calculate  integrals  containing  the  Bessel/Airy
functions in their kernel, while in 1D case, with the function sin2(x)/x2 (see relation (6) below) it is,
relatively, simple. (2) The main features – like the shape of the interferometric pattern and dependence
of its null-point positions on the antenna diameter and the size of the observed object (Mars) – can be
qualitatively reproduced in the simple 1D model (up to some factor less than 1.5). And, (3) because of
the simplistic assumptions: (i) ideal parabolic dish of diameter D and, (ii) homogeneously bright disc of
angular size M as a model for the Mars, we cannot approach the real situation fully in a quantitative
manner, anyway, even with the 2D model.

The 1D calculation basically follows the mathematical derivation of the van Zittert-Cernike theorem
that stands in the foundation of interferometry. I did it by pencil on the paper, the text here summaries
just the main points. The situation is sketched in the Fig. 3 (next page).

The (complex) voltage U1(t) at Antenna 1 caused by incident radiation with the electric-field intensity
E(υ,t) can be written as

Û 1(t)=K1∫source
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which can be re-arranged (using notorious relation between wavelength λ and angular frequency ω) as

Fig. 2: flux density vs uv distance - a discrepancy between null-
points for the obs and sim data.
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Here, integration over x goes over the (1D ideal parabolic) antenna with diameter D1, integration over
the hour-angle υ, measured as an offset to the phase-reference point θ0 (i.e., θ=θ0+υ) goes over the (1D)

Fig. 3: Geometry of the two-antenna interferometer.



source extent, and τD is the usual phase delay introduced by the delay loop in a correlator. We assume
that the source extent is not so big, so that the angular distance υ from the phase-reference position  θ0

remains  small,  and we can  thus  write  sin(υ)  ≈ υ.  The  (complex)  electric-field  amplitude  E(υ,t)  is
assumed to be varying slowly with time, on the time-scale much longer than  1/f, where  f=c/λ  is the
observing frequency. The K1 is an instrument-dependent coefficient for the antenna and receiver 1. 

For the Antenna 2, the voltage at the same time instant t reads:
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Using the relation for sin(x+y) and, again, taking into account that υ«1, one can write

sinθ=sin(θ0+ϑ)=sinθ0 cosϑ+cosθ0sin ϑ≈sinθ0+cosθ0 ϑ and rewrite the above relation for U2(t) –

with definition of projected baseline length (i.e., uv distance) B≡|B|cos(θ0) – as 
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c
represents  the  geometrical  delay  at  the  Antenna  2, which  is  separated  by  a

baseline of the length |B| from the Antenna 1, for waves coming from the phase-reference direction θ0.

Now, if we define the electric gain (a complex-value function, in general) of the antenna j=1,2 as
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the (complex) cross-correlation/visibility for the (projected) baseline B V 1 ,2(B)=⟨U 1(t)⋅U 2(t )⟩ (the

over-line means complex conjugation and the angle brackets time averaging) can be written as

V 1 ,2(B)=⟨U 1(t)⋅U 2(t )⟩=∫source
GE, 1(ϑ)GE ,2(ϑ)I (ϑ)exp (−

2πi B
λ

ϑ)d ϑ                 (2). 

Here, I(ϑ)=⟨E (ϑ ,t )⋅E(ϑ , t)⟩ is  the  specific  intensity  of  incoming  radiation  (i.e.,  directly

proportional  to  the  source  brightness).  The  result  above  has  been  achieved  using  the  “standard”
assumptions for the van Cittert-Zernike (abbreviated as vC-Z in the following) theorem, i.e., (i) The
radiation coming from different part of the source is not correlated (has random phases), (ii) The delay
τD introduced in the correlator delay loop is set to equalize the geometrical (baseline) delay  τB defined
above. If we replace the electric gain  GE by a (differential) antenna area by definition (correct up to
some constant real factor for proper units/scaling)

A j(ϑ)≡|GE , j(ϑ)|
2 , 

we can summarize the above result as

 V 1 ,2(B)=e iΦ1 ,2∫source √ A1(ϑ) A2(ϑ)I (ϑ)exp(−
2π i B

λ
ϑ)dϑ                                    (3),



where the baseline-related constant phase factor in front of the integral may appear if the electrical
gains  GE1,2 have non-zero imaginary parts (ideally they do not). The relation above is basically (1D)
generalization of the vC-Z theorem for heterogeneous arrays (i.e., the arrays containing antennas of
different sizes), for homogeneous arrays it transforms back to the usual vC-Z formula. 

A brief  note:  This  generalization  is,  actually,  not  essential  for  the  further  discussion  about  Mars
observations. However, I was interested in it as in the Solar Observing Mode we use the “kitchen-sink”
array,  i.e.,  the  combination  of  the  12m  and  7m  arrays  is  not  done  in  post-processing,  but  it  is
implemented via hard connection of both arrays into the main (12m) array correlator. Expressing it
more explicitly: we have 12-12, 12-7, as well as the 7-7 baselines in the solar science observations. We
use tclean() with gridder='mosaicft', which should (according to CASA cookbook) ensure the proper
combination of the heterogeneous baselines in the Fourier space, but I have to admit that so far it was a
kind of a black box for me, I started to think about the theoretical foundations of this combination right
inspired by the problem raised by Kazi and Hideo.

Let us now come back to the discussed Mars observations. We want to calculate idealized interference
pattern, i.e. , the flux density vs. the uv-distance for the 12m array. In our 1-D model it can be done by
calculating the integral in (2), making its absolute value (modulus), and scaling the result down by the
antenna area. For our case D1=D2=D being the effective diameter of the 12m antennas. The “antenna
area” in our 1-D case means just its “length”, i.e., the diameter D. Hence the uv flux density can be
calculated as

Fuv (B)=
|V (B)|

D
                                                                                                            (4),

where V(B) is the integral in (2) for the projected baseline length B.

For the Mars disk we use approximation of homogeneous brightness, which in 1-D reads

I(ϑ)=I 0 χ (−M /2 ,M /2)                                                                                               (5),

where M is the angular diameter of the Mars disk, and χ(a,b) is the so called characteristic function of
the interval <a,b>, having its value equal to 1 on that interval and 0 outside.

Substituting (1) and (5) into (2), and the result of this substitution finally into (4), we get
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ϑ)d ϑ                                  (6),

where the D and M after semicolon indicate that the visibility function parametrically depends on the
(effective)  antenna  diameter  and  (effective)  Mars-disk  size.  After  integrating  by  parts  and  some
substitution/re-scaling, and inserting the result into (4), we finally arrive to relation

Fuv (B ;D , M )=
K 2 I 0 λ

π |− 4sin2
(m /2)cos(m b)

m
+(b−1)Si [(b−1)m]+(b+1)Si [(b+1)m ]−2b Si (bm)|

(7).

Here  Si(x) means  the  (Fresnel)  sine  integral function,  b≡B/D is  the  (projected)  baseline  length
expressed in units of the antenna diameter, and m≡πMD/λ is basically (up to a small numerical factor)
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the Mars disk (angular) size expressed in units of the antenna primary beam. Relation (7) represents a
basis for the further analysis. As can be seen already from (7) and better visible from results of the
parametric study (varying D and M; see further), the interference pattern depends on both antenna
diameter D and the Mars size M.

Parametric study: varying the antenna diameter(s) and Mars-disk size(s)

We can now play with relation (7) and calculate the interferometric structures for various parameters D
and M. We can also make ratios (like in Fig. 1) between patterns for different set of parameters, just
pretending that one set represents the observed and the other one the simulated data. In order to mimic
the observed data more realistically we add a small noise to the “observed” flux density. 

It is natural to vary the D and M parameters for the simulated data – such a play is, in fact, the goal of
simulations. On the other hand,  we should admit that we do not know exactly even the effective
(observation) antenna diameter, say D0, for the 12m array neither the effective (observed) Mars
disc size (M0). The nominal antenna diameter is, of course 12m, on the other hand, for example, for the
purposes of  pbcorr() calculations, the effective antenna diameter has been found to be 10.7m  (NB:
Wrong setting of this parameter is the root of a known bug, which eventually issued into necessity for
re-imaging many older mosaic data in frame of the QA3). I am not an ALMA-technology expert, but I
can  imagine,  that  for  the  purpose  of  observed  interferometric  pattern  Fuv(B) the  effective  antenna
diameter can be yet a bit different. The same holds for the Mars disk size: The homogeneously bright
disk of the actual Mars angular size is an idealization, in fact we have different brightness pattern there,
which leads to an idea that the homogeneous disk to be used as the best-fit replacement for the actual
brightness distribution, can actually easily have different (and unknown) effective size.

In order to perform the parametric study numerically I prepared a set of simple routines in C++ that
basically implement the relation (7) plus other above described stuff like adding a small random noise
to “observed” data and calculating the sim/“obs” ratio for varying set of parameters D, M, D0 and M0,
and displaying the results via IDL (damned, I still did not find time for learning Python’s MatPlotLib
and replace/avoid such a way using the stupid IDL☺).  The codes and full set of results can be found –
including the description and how-to-use hints (see the README.pdf file there) – at the following URL

http://wave.asu.cas.cz/shared/Mars.2019/ 

In the following I present just a few samples of the results.

Sample results

First I shall present the result for the case, where the “observation” and simulation parameters match
exactly,  i.e.,  D=D0=10.7m (the  effective  12-m  antenna  size  as  used  in  CASA::pbcorr())  and
M=M0=20 arcsecs  (as  of  Hideo’s  study)  –  see  Fig.  4.  The  only  difference  between  the  two  flux
densities (“obs” & sim) is just presence of a small additive random noise in the “observed” data. One
can see exactly what is expected (cf. Section “Introduction”): The ratio oscillates around the mean
value 1.0, the “oscillations” are located around the null points of the interferometric pattern (because of
indefinite limit ‘0/0’ and the noise present in the “observed” flux density) but the parts between the
adjacent null points are flat, they exhibit no slope, contrary to Fig. 1.

http://wave.asu.cas.cz/shared/Mars.2019/


As a next example, I show the data where “observed” and simulated parameters do not match exactly –
the “observed” parameters remain the same as before (D0=10.7m, M0=20 arcsecs), while the simulation
has  used D=10.2m  and  M=18.5  arcsec  –  see  Fig.  5  (next  page).  Even  for  the  relatively  small
discrepancy between “obs” and sim parameters we get different interferometric patterns. Namely, the
(mean) ratio is not equal to 1.0, and, inherently connected with that, we have the slopes of the
sim/obs ratio function between the null points, like in Fig. 1.

I am aware that there are many issues when comparing our simple 1-D data and the more realistic 2-D
study by Hideo. One particular question concerns the relative size of the Mars disc vs. antenna primary
beam size. While for standard 2-D parabolic dish the FWHM beamsize reads θFWHM≈1.02λ /D , in

case of the 1-D simplification it is θFWHM
1 D

≈
2⋅1.392λ

π D
≈0.886 λ/ D . (NB: The numerical factor 1.392

has been found by solving the transcendental equation sin2(x)/x2=1/2 , which implies from relation (1) –
see the toy code  fwhm.cc in the  parametric_study/ subdir at the above referenced URL). Hence, the
Mars disk size as expressed in the antenna FWHM beam size is different for the 1-D case if we use the
“2D -  study” parameters  D0=10.7m and  M0=20 arcsecs. In the 2D study by Hideo (and in observed
reality)  the  size  of  the  Mars  disk  expressed  in  PB size  is  ~20”/26”=0.77.  In  order  to  fit  our  1D
simulation to this value I have mangled both the “real” antenna diameter and the “real” Mars size to
values  D0=8m  and  M0=15arcsecs  and  have  made  a  second  set  of  parametric  study  for  those
“observation/real” set of parameters: That is why there are two sub-directories in the  fig/ directory –
one to fit the real antenna and Mars sizes to the 2D study and one to match rather relative Mars disk
size expressed in terms of the primary-beam FWHM between 1D and 2D cases. One example from the
latter  set  of  the  parametric-study results  is  in  Fig.  6  (page  9).  However,  qualitatively  there  is  no
significant difference.

Fig. 4: Upper panel: Simulated (black line) and "observed" (red diamonds) interferometric pattern (flux density vs uv-distance) for the 
case where simulated and "observed" antenna & Mars sizes match exactly. Bottom panel: The ratio sim/obs.



Conclusions

This study aims at contributing to the discussion, whether the Mars observation by 12m ALMA array
has trustworthy flux densities or whether these fluxes need to be up-scaled by some factor (about ~1.3).
I  did  a  simple  1D analytical  calculations  in  order  to  find,  which  parameters  control  the  shape  of
interference pattern (= flux density expressed as a function of projected baseline length [a.k.a. the uv-
distance]). Being just 1D, the analysis is certainly a simplification that can not reproduce the real 2D
situation in  Hideo’s  analysis  quantitatively.  On the other  hand,  qualitatively,  the main features are
reproduced well and as the resulting relation (7) for the flux density is an analytical expression, we
have full control over parameters that change the shape of interferometric pattern. Namely, it is clear
that  both the antenna diameter D and the Mars disk size  M influence the pattern, including the
positions of its null points. 

The results found from the parametric study based on the relation (7) can be summarized as follows:

• Ratio between interferometric patterns with different controlling parameters D and M is a quite
sensitive indicator – even small differences in controlling parameters lead to a large change of
the pattern from the case of the perfect match displayed in Fig. 4.

• Mismatch between the “observation” and “simulation” parameters  D and  M expresses
itself in the sim/obs ration by (i) departure of the ratio mean form 1.0, and (ii) clearly visible
slopes between the null points of the interferometric pattern.

Fig. 5: Like in Fig. 4, but the sim and obs parameters mismatch. This has two mutually related consequences: The mean of ratio is not 1.0
and the slopes in ratio (cf. Fig. 1) between the null points are prominent.



• Because  the  data  in  Hideo’s  study clearly  show similar features  –  namely  the  strong
slopes, I would argue that the effective antenna size and/or effective Mars-disk size as
used in the simulation does not match the same parameters in reality/observations.  This
mismatch might be caused by reasons that I  have discussed above – let  me briefly repeat:
(i) the  effective  antenna  diameter  for  the  purpose  of  measuring  the  interferometric  pattern
might be different from both the nominal value of 12m and the effective diameter of 10.7m as
used in CASA::pbcorr(), (ii) the size of the effective homogeneously-bright Mars disk, which
we take as a replacement for the actual inhomogeneous Mars brightness distribution, might be
different  from  its  nominal  “optical”  angular  diameter.  Or,  even,  such  a  replacement  is
inappropriate and the sim/obs ratio is very sensitive to the exact Mars brightness distribution,
as Hideo already pointed out.  

 

To sum up, I do not see the  mismatch between simulated and observed 12m data in the Hideo’s
study as  critical,  because – at  least  to  some extent – they  might be explained by the mismatch
between effective antenna and/or Mars sizes used in the simulations and the reality. Hence, the
observed 12m flux is not precluded to be wrong and I would tend rather to believe it.

In Chlum and Ondřejov, November 14th, 2019

Fig. 6: Like in Figs. 4 and 5, the "real/observation" antenna diameter and Mars angular size were both mangled to fit the ratio of Mars 
angular size to primary-beam FWHM from the 2D Hideo’s study. 
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