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Need for long baselines

• baseline D

• wavelength λ

• resolution θ ∼ λ/D [ 1′′ = 5×10−6 rad ]

D = 100 m 1 km 10 km 100 km 1000 km 10 000 km
λ = 1 m 30′ 3′ 20′′ 2′′ 200 mas 20mas

20 cm 6′ 40′′ 4′′ 400 mas 40mas 4 mas
6 cm 2′ 12′′ 1′′ 120 mas 12mas 1 mas
2 cm 40′′ 4′′ 400 mas 40 mas 4 mas 400 µas

7 mm 15′′ 1.′′5 150 mas 15 mas 1.5 mas 150 µas
3 mm 5′′ 500 mas 50 mas 5 mas 500 µas 50µas
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The situation in the 50s/60s

• Australia: radio-linked interferometers up to D = 10 km

at λ = 3 m  θ = 1′

• Cambridge One-Mile and 5-km telescopes

• Jodrell Bank: portable antennas radio-linked with 250-ft

up to D = 130 km at λ = 2 m down to 6 cm  θ < 1′′

• later MTRLI (Multi-Telescope-Radio-Linked-

Interferometer), later renamed to MERLIN (Multi-

Element-Radio-Linked-Interferometer-Network) (1980)

• direct connections or radio-link difficult for longer baseli-

nes
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The need for longer baselines

• some sources still unresolved at these scales (< 50mas)

• interplanetary scintillation: ∼ few mas

• synchrotron self-absorption: ∼ 1mas

• flat-spectrum sources: flux variations on time-scales of

months or less: . mas

• resolving these source not possible with connected (or

radio-linked interferometers)

 Very Long Baseline Interferometry
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Very Long Baseline Interferometry

• very long baselines

• no direct connection between stations

• record signals on tapes, disks, etc.

• play back simultaneously and correlate later

• synchronisation: also record time-stamps

• observe at exactly the same frequency
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Connected interferometer → VLBI

[ Thompson (1999) ]
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Connected → VLBI : more details

[ Napier (1999) ]

• connected interferometer

– mix down to IF

– amplify and transmit at IF

– mix down to baseband

– correlate

• VLBI

– mix down to IF

– amplify at IF

– mix down to baseband

– record, fly, play back

– correlate

 need accurate LOs !
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The role of the local oscillators

• keep the time

– need to play back signals synchronised

– required accuracy: coherence time

– coherence time ∼ 1/ bandwidth

– keep synchronisation over observation

• define the observing frequency

– observing frequency ν shifted to baseband

– recorded frequency ν ′: ν ′ = ν−ν0

– error in ν0 translates to error in ν ′,ν

[ Thompson (1999) ]
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The correlation

• direct correlation of signals V1 and V2

– signals V1(t) = A1e2π iνt V2(t) = A2e2π iνt

– correlation:C12 := 〈V1(t)V
⋆
2 (t)〉

=
〈

A1A
⋆
2 e2π i(ν−ν)t

〉

= A1A
⋆
2

• correlation of down-mixed signals V ′
1 and V ′

2

– frequencies of local oscillators: ν1 and ν2

– signals V ′
1(t) = A1e2π i(ν−ν1)t V ′

2(t) = A2e2π i(ν−ν2)t

– correlation: C ′
12 :=

〈

V ′
1(t)V

′
2
⋆
(t)

〉

=
〈

A1A
⋆
2 e2π i(ν1−ν2)t

〉
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VLBA station system
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Sampling and digitisation

• mix down to baseband (for several bands)

• frequency range 0 – bandwidth

• Nyquist sampling 2× bandwidth

• typical sampling width 1 or 2 bits

– recording bandwidth limited

– optimal 1–2 bit

– typical 2 bit

bits per sampling relative bandwidth total
sample sensitivity bandwidth sensitivity sensitivity

1 1 1 1 1

2 1.38 1/2 1/
√

2 0.98
4 1.5 1/4 1/2 0.75
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Recording systems

• Canadian analog system studio TV recorders, 4MHz, 3 h

• MkI digital 7-track computer tape, 330 kHz, 1-bit, 150 sec

• MkII video recorders (later VCR), 1-bit, 2 MHz

• MkIII 28-track tape recorders, 1-bit, 4 MHz per track

• Canadian S2 VCR (8 in parallel), 128 Mb/s

• Japanese K-2, K-3, K-4

• VLBA 1 or 2-bit, 8 bands, 32-track tape, 256Mb/s per recorder

• MkIV similar to VLBA but up to 512 Mb/s

• Mark 5 → Mark 5C disk recording, 1024 Mb/s (→ 4096)

• PC-EVN, Japanese K5, . . .
[ Alef (2004) ]
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Stability of local oscillators

• atomic clocks (rubidium or hydrogen masers)

• long-term synchronisation with GPS receiver
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Geometric delays

τ ∼ 10000km

300000km/s

∼ 30ms

1

ν
∼ 1ns

τ ν ∼ 3 ·107
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Delays, phases, rates

• effect of a delay τ

– telescope signal Vj(t) = Aje
2π iν(t−τj)

– correlation 〈V1V ⋆
2 〉= A1A

⋆
2e

2π iν(τ2−τ1)

– phase φ = 2πν(τ2− τ1)

• frequency dependence

–
∂φ

∂ν
= 2πτ ‘delay’ is frequency-derivative of phase

• phase rate and delay rate

–
∂φ

∂t
= 2πν

∂τ

∂t
equiv. Doppler effect, frequency error
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Delays: connected vs. VLBI
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Delay model

[ Walker (1999) ]

• predictable delays are cor-

rected by the correlator

– geometric delay

– earth rotation

– aberration

– dry atmosphere

• unpredictable delays have

to be calibrated later

– wet atmosphere

– ionosphere

– station clocks

O. Wucknitz 2007 17

Calibration of VLBI data

• very similar to connected interferometers

• additional steps due to

– long baselines → high resolution

∗ need accurate source positions

∗ no amplitude calibrators available

∗ use Tsys to calibrate

∗ limited field

– long baselines → unstable phases

∗ need bright fringe-finder source

∗ phase-referencing

∗ stop phase-winding: fringe-fitting

• other issues

– sparse uv coverage
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Amplitude calibration

• correlation coefficient Cjk = B
Vjk

√

NjNk

• B: digitisation etc., V : visibility amplitude [Jy]

• N: Source Equivalent Flux Density (SEFD) [Jy]

– N =
Tsys

G
– G : antenna gain [K/Jy] elevation dependent

increase in system temperature for a 1 Jy source

– Tsys: system temperature [K] highly variable

– Tsys measured (with additional noise source)

∗ VLBA: continuously

∗ EVN: during recording gaps
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Practical amplitude calibration in AIPS

• Tsys and G already in data (EVN, VLBA)

– FITLD the data with TY and GC table

• otherwise

– load ASCII tables with ANTAB

• use APCAL to produce SN table

• CLCAL to apply SN and produce CL table
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Phase-cal (a.k.a. pulse calibration)

• calibrate instrumental delays for each observing band

• phase-cal tones (e.g. VLBA)

– injection of pulses every 1µs near feed

– regular coherent spikes every 1 MHz

– intrumental phases and delays from them

– PCLOD to load ASCII table → PC table

– PCCOR to produce SN table, CLCAL → CL table

• manual phase-cal (e.g. EVN)

– use strong calibrator source

– fringe-fit (see later) for delay and phase

– apply solutions to all data
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The need for fringe-fitting

• large time-varying delays

– phases change rapidly

– phase changes frequency-dependent

• standard calibration techniques

– determine phases regularly

– ∼ constant between the measurements

– had to do this every few seconds!

• fit delays and rates instead of phases

– allows for rapid changes

– rate of changes and delays vary more slowly
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Linear approach for residual phases

φ(t,ν) = φ0 +
∂φ

∂ν
∆ν +

∂φ

∂t
∆t [+dispersive delay]

• have to determine

– phase φ0

– delay
∂φ

∂ν

– rate
∂φ

∂t

• delays and rates are stable over a longer

time and wider band than φ(t,ν)

• the process to find phase, delay, rate is

called ‘fringe-fitting’
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Practical fringe-fitting with AIPS

• tasks FRING or KRING

• more sophisticated version of CALIB (but no amplitudes)

• first step: coarse grid-based search for baselines

(maybe with stacking)

– FFT from frequency-time to delay-rate domain

– find peak delay and rate

• second step: refine on station-basis

– least-squares solution → SN table

• can use multi-band or dispersive delay

• transfer solutions from calibrators to target sources

CLCAL to apply SN table and produce CL table

O. Wucknitz 2007 24

Other issues

• high resolution

– use small pixels for maps (CELLSIZE in IMAGR)

– field very small

– maybe clean several sub-fields simultaneously

• uv coverage

– mapping and self-calibration not very stable

– hopefully simple source structure

• field-size limitations

– primary beams (same as connected interferometers)

– maximal field width:

(array size) / (telescope size) ∼ (105–106)2 pixels

– bandwidth smearing, time-averaging smearing

– wide-field VLBI is a challenge!
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VLBI science: objects

• sensitivity (µJy/beam) not less than other arrays

• but: beam is much, much smaller

• surface-brightness sensitivity is poor

• need bright but small sources

• high brightness temperature

• Planck-law: Iν =
2hν3

c2

1

ehν/(kT )−1

• Rayleigh-Jeans approximation: Iν ≈
2kTν2

c2
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Planck and Rayleigh-Jeans

O. Wucknitz 2007 27

Flux density and brightness temperature

• Rayleigh-Jeans approximation: Iν ≈
2kTν2

c2

• flux density Sν per beam: multiply with beam area

beam area ≈
(

λ

L

)2

=
c2

ν2L2

• baseline length L

• Sν ≈
2kT

L2
independent of ν !

• e.g. L =10 000 km, Sν = 1mJy  T = 4 ·107 K

• VLBI sensitive mostly to non-thermal processes
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VLBI science

• jets from AGN, microquasars

• superluminal motion

• gravitational lenses

• extragalactic supernovae

• masers

– circumstellar

– megamasers in AGN

• astrometry

• geodesy
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Some pictures . . .
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Wide-field VLBI at 90 cm
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Geodesy
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VLBI arrays

• Very Long Baseline Array (VLBA)

– 10 identical telescopes of 25 m (USA)

– full-time VLBI array

• European VLBI Network (EVN)

– ∼ 18 telescopes (Europe, Asia, South Africa, Arecibo)

– 3 sessions each year (+ e-VLBI)

• VLBI Exploration of Radio Astrometry (VERA)

– 4 stations (Japan)

• High Sensitivity Array (HSA)

– VLBA + VLA + Arecibo + Green Bank + Effelsberg

• Long Baseline Array (LBA)

– 8 telescopes in Australia

• global VLBI

– VLBA + EVN + anything
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VLBA
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EVN
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EVN correlator at JIVE
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VERA
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LBA
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Special developments: Space VLBI

• VLBI Space Observatory Programme (VSOP)

• satellite HALCA (Highly Advanced Laboratory for Communica-

tions and Astronomy)

• launched 1997

• last contact 2003

• 8 m antenna

• 1.6GHz and 5GHz

• VSOP2 is planned
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uv coverage with HALCA
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e-VLBI

• classical VLBI

– record on tape/disk

– ship tapes/disks to correlator

– correlate later

• e-VLBI

– send data directly to correlator

– high-bandwidth data links (‘internet’)

• advantages of e-VLBI

– immediate feedback

– quick turnaround

• disadvantages of e-VLBI

– cannot repeat correlation

– no multiple passes
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LOFAR
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How to observe

• choose array, frequency, correlator mode, etc.

• write proposal

– deadlines for VLBA, EVN, global: 1 Feb, 1 Jun, 1 Oct

– special dates for EVN e-VLBI (changed ?)

• wait . . .

• write the schedule with SCHED

• wait for the correlated data

• calibrate, analyse, . . .

• general recommendation: ask the experts!
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