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Topics 

• Practical Extensions to the Theory: 

– Finite bandwidth 

– Rotating reference frames (source motion) 

– Finite time averaging 

– Local Oscillators and Frequency Downconversion 

• Coordinate Systems 

– Direction Cosines 

– 2d and 3d measurement space 

• Example of Visibilities from Simple Sources 
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Review 

• In the previous lecture, I set down the principles of Fourier 

synthesis imaging.   

• I showed: 

 

Where the intensity In is a real function, and the visibility 

V(b) is complex and Hermitian. 

• The model used for the derivation was idealistic – not met in 

practice: 

– Monochromatic 

– Stationary reference frame.   

– No time averaging 

• We now relax, in turn, these restrictions. 

 



• Real interferometers must accept a range of frequencies.  So 
we now consider the response of our interferometer over 
frequency.  

• Define the frequency response function, G(n), as the amplitude 
and phase variation of the signal over frequency. 
 
 
 
 
 
 
 

• The function G(n) is primarily due to the gain and phase 
characteristics of the electronics, but can also contain 
propagation path effects.   

• In general, G(n) is a complex function.  
 

The Effect of Bandwidth. 

G 

n 
n0 

Dn 
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The Effect of Bandwidth. 
 

• To find the finite-bandwidth response, we integrate our fundamental 

response over a frequency width Dn, centered at n0: 

 

 

 

 

• If the source intensity does not vary over the bandwidth, and the 

instrumental gain parameters G1 and G2 are square and identical, then 

 

 

 

where the fringe attenuation function, sinc(x), is defined as: 
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Bandwidth Effect Example 

• For a square bandpass, the bandwidth attenuation reaches a null when     

tgDn = 1, or  

 
• For the old VLA, and its 50 MHz bandwidth,  and for the ‘A’ configuration, (B 

= 35 km), the null was ~1.3 degrees away. 
• For the upgraded VLA, Dn = 2 MHz, and B = 35 km, then the null occurs at 

about 27 degrees off the meridian.   
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Observations off the Baseline Meridian  

• In our basic scenario -- stationary source, stationary 
interferometer -- the effect of finite bandwidth will 
strongly attenuate the visibility from sources far from the 
meridional plane.   

• Since each baseline has its own fringe pattern, the only 
point on the sky free of attenuation for all baselines is a 
small angle around the zenith (presuming all baselines are 
coplanar).   

• Suppose we wish to observe an object far from the zenith? 

• One solution is to use a very narrow bandwidth – this 
loses sensitivity, which can only be made up by utilizing 
many channels – feasible, but computationally expensive.   

• Better answer:  Shift the fringe-attenuation function to the 
center of the source of interest.   

• How?  By adding time delay.   



Adding Time Delay 
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Observations from a Rotating Platform  

• To follow a moving source with minimal loss of coherence, we simply add 
in delay to match the changing geometric delay.   
 

• To minimize bandwidth loss, the delay difference must be less than dt << 
1/Dn .  (Typically, microseconds).   

 
• For the ‘radio-frequency’ interferometer we are discussing here, this will 

automatically track both the fringe pattern and the fringe-washing 
function with the source.    
 

• To hold the phase difference to much less than a radian, a more stringent 
condition arises:   dt << 1/n. (Typically, nanoseconds).    Note that the 
residual phase error from an incorrect delay can be corrected for 
following correlation).   

 
• By inserting the appropriate delay, a moving point source, at the 

reference position, will give uniform amplitude and zero phase 
throughout time (provided real-life things like the atmosphere, 
ionosphere, or geometry errors don’t mess things up …  ) 



Illustrating Delay Tracking 

• Top Panel: 

Delay has been added 

and subtracted to move 

the delay pattern to the 

source location. 

 

• Bottom Panel: 

A cosinusoidal sensor 

pattern is added, to 

illustrate losses from a 

fixed sensor.   



Another Justification for Delay Tracking  

• There is another very good reason to ‘track’ the fringe 

pattern by adding time delay.   

• The ‘natural fringe rate’ – due to earth’s rotation, is given by  

 

• Where u = B/,  the (E-W) baseline in wavelengths, and we 

=7.3x10-5  rad/s is the angular rotation rate of the earth.   

• For a million-wavelength baseline,   nf ~ 70 Hz – that’s fast. 

• There is *no* useful information in this fringe rate – it’s 
simply a manifestation of the platform rotation (indeed, it’s a 
Doppler shift).   

• Tracking, or ‘stopping’ the fringes greatly slows down the 
*post-correlation* data processing/archiving needs.   
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Time Averaging Loss 

• So – we can track a moving source,  continuously adjusting 

the delay to move the fringe pattern with the source.   

• This does two good things: 

– Slows down the data recording needs 

– Prevents bandwidth delay losses.   

• From this, you might think that you can increase the time 

averaging for as long as you please.   

• But you can’t – because the convenient tracking only works 

perfectly for the object ‘in the center’ – the point for which 

the delays have been pre-set.   

• All other sources are moving w.r.t. the fringe pattern – and   

this is where the essential information lies… 
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Time-Smearing Loss Timescale 

Simple derivation of fringe period, 

from observation at the SCP. 

/D 

Interferometer 

Fringe Separation 

/B 

we 

• Turquoise area is antenna 

primary beam on the sky – 

radius = /D 

• Interferometer coherence 

pattern has spacing = /B 

• Sources in sky rotate about 

NCP at angular rate: 

           we =7.3x10-5 rad/sec. 

• Minimum time taken for a 

source to move by /B at 

angular distance  is:    

 

               

• This is 10 seconds for a 35-

kilometer baseline and a 

 

SCP 

Primary Beam 

Half Power 

Source 

For sources at the 

half power distance 
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Time-Averaging Loss 

• So, what kind of time-scales are we talking about now? 

• How long can you integrate before the differential motion 

rotates the source through the fringe pattern?   

• Case A:  A 25-meter parabaloid,  and 35-km baseline:   

• t = D/(Bwe) = 10 seconds.  (independent of wavelength) 

• Case B:  Whole Hemisphere for a 35-km baseline:    

– t = /(Bwe) sec = 83 msec at 21 cm. 

• Averaging for durations longer than these will cause severe 

attenuation of the visibility amplitudes.   

• To prevent ‘delay losses’, your averaging time must be much 

less than this. 

– Averaging time 1/10 of this value normally sufficient to prevent time 

loss. 

 

 

 

 



The Heterodyne Interferometer:   

LOs, IFs, and Downcoversion 

• This would be the end of the story (so far as the fundamentals 
are concerned) if all the internal electronics of an 
interferometer would work at the observing frequency (often 
called the ‘radio frequency’, or RF). 

 
• Unfortunately, this cannot be done in general, as high frequency 

components are much more expensive, and generally perform 
more poorly than low frequency components.   

 
• Thus, most radio interferometers use ‘down-conversion’ to 

translate the radio frequency information from the ‘RF’ to a 
lower frequency band, called the ‘IF’ in the jargon of our trade.   
 

• For signals in the radio-frequency part of the spectrum, this can 
be done with almost no loss of information.   
 

• But there is an important side-effect from this operation in 
interferometry which we now review.     



Downconversion 
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At radio frequencies, the spectral content within a passband can be 

shifted – with almost no loss in information, to a lower frequency 

through multiplication by a ‘LO’ signal.   
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This operation preserves the amplitude and phase relations. 



Signal Relations, with LO Downconversion 

wLO 
fLO X X 

t0 

X 

tg 

E cos(wRFt) 

E cos(wIFt-fLO) 

(wRF=wLO+wIF) 

E cos(wIFt-wIFt0-fLO) E cos(wIFt-wRFtg) 

Local 

Oscillator 
Phase 

Shifter 

Multiplier 

Complex Correlator 

Not the same phase 

as the RF 

interferometer! 

• The RF signals are multiplied by a pure sinusoid, at frequency nLO 

• We can add arbitrary phase fLO on one side. 
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Recovering the Correct Visibility Phase 

• The correct phase (RF interferometer) is:      
 

• The observed phase (with frequency downconversion) is:  

                                                         
 

• These will be the same when the LO phase is set to: 

 

 

• This is necessary because the delay, t0, has been added in the IF portion 

of the signal path, rather than at the frequency at which the delay actually 

occurs.  

 

• The phase adjustment of the LO compensates for the delay having been 

inserted at the IF , rather than at the RF.   

 
0
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The Three ‘Centers’ in Interferometry 

• You are forgiven if you’re confused by all these ‘centers’.   

• So let’s review: 

1. Beam Tracking (Pointing) Center:   Where the antennas 

are pointing to.  (Or, for phased arrays, the phased array 

center position).  

2. Delay Tracking Center:  The location for which the 

delays are being set for maximum wide-band coherence.   

3. Phase Tracking Center:  The location for which the LO 

phase is slipping in order to track the coherence pattern.   

• Note:  Generally, we make all three the same.  #2 and #3 are 

the same for an ‘RF’ interferometer.  They are separable in a 

LO downconversion  system.   
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Interferometer Geometry 

• We have not defined any geometric system for our relations.   

• The response functions we defined were generalized in terms 

of the scalar product between two fundamental vectors: 

– The baseline ‘b’, defining the direction and separation of 

the antennas, and 

– The unit vector ‘s’, specifying the direction of the source.   

• At this time, we define the geometric coordinate frame for 

the interferometer.   

• We begin with a special case:  An interferometer whose 

antennas all lie on a single plane.   
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The 2-Dimensional Interferometer 

To give better understanding, we now specify the geometry. 

 

Case A:    A 2-dimensional measurement plane.   
 

• Let us imagine the measurements of  Vn(b) to be taken entirely on a 

plane. 

• Then a considerable simplification occurs if we arrange the coordinate 

system so one axis is normal to this plane.   

• Let (u,v,w) be the coordinate axes, with w normal to this plane.  Then: 

 

 

          u, v, and w are always measured in wavelengths. 

• The components of the unit direction vector, s, are: 

 

 

  

 



The (u,v,w) Coordinate System.   

The baseline vector b is specified 

by its coordinates (u,v,w) 

(measured in wavelengths).   

In the case shown, w = 0, and 

)0,v,u( b

u 

v 

w 

b 
 

b 

• Pick a coordinate system (u,v,w) 

to describe the antenna 

positions and baselines. 

• Orient this frame so the plane 

containing the antennas lies on 

the plane w = 0.    



Direction Cosines – describing the source  

The unit direction vector s is 

defined by its projections (l,m,n) 

on the (u,v,w) axes.  These 

components are called the 

Direction Cosines. 
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The angles, a, b, and  are between the direction vector 

and the three axes. 

 
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The 2-d Fourier Transform Relation 

Then, nb.s/c = ul + vm,   (since w = 0), from which we find,  

 

 

 

 which is a 2-dimensional Fourier transform between the projected 

brightness and the spatial coherence function (visibility): 

 

 

And we can now rely on two centuries of effort by mathematicians on how 

to invert this equation, and how much information we need to obtain an 

image of sufficient quality.   

Formally, 

 

 

In physical optics, this is known as the ‘Van Cittert-Zernicke Theorem’.   



• Which interferometers can use this special geometry? 

a) Those whose baselines, over time, lie on a plane (any plane).   

All E-W interferometers are in this group.  For these, the w-coordinate points to 

the NCP.   

– WSRT (Westerbork Synthesis Radio Telescope) 

– ATCA (Australia Telescope Compact Array) (before the third arm) 

– Cambridge 5km (Ryle) telescope (almost).   

b) Any coplanar 2-dimensional array, at a single instance of time.   

In this case, the ‘w’ coordinate points to the zenith.   

– VLA or GMRT in snapshot (single short observation) mode.     

• What's the ‘downside’ of 2-d (u,v) coverage? 

– Resolution degrades for observations that are not in the w-direction.  

• E-W interferometers have no N-S resolution for observations at the celestial 

equator. 

• A VLA snapshot of a source will have no ‘vertical’ resolution for objects on the 

horizon. 

Interferometers with 2-d Geometry 



Generalized Baseline Geometry  
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n 

• Coplanar arrays (like the VLA) 

cannot use the 2-d geometry  

in synthesis mode, since the 

plane of the array is rotating 

w.r.t. the source.   

• The sampled region is now 

three-dimensional.   

• In this case, we must adopt a 

more general geometry, 

where all three baseline 

components are to be 

considered.    



General Coordinate System 

 w points to, and follows the source phase center, u towards the east, and 

v towards the north celestial pole.  The direction cosines l and m then 

increase to the east and north, respectively. 

b 
s00 s0 

w0 

u  ‘Projected  

  Baseline’ 

u-v plane – always perpendicular to 

direction to the phase center. 

2

0

2

0 vu 
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3-d Interferometers  
Case B:  A 3-dimensional measurement volume: 
 
• What if the interferometer does not measure the coherence function 

on a plane, but rather does it through a volume?  In this case, we adopt a 
different coordinate system.  First we write out the full expression:   

 
 
 
      
  (Note that this is not a 3-D Fourier Transform). 

• We orient the w-axis of the coordinate system to point to the region of 
interest.  The u-axis point east, and the v-axis to the north celestial pole. 

• We introduce phase tracking, so the fringes are ‘stopped’ for the 
direction l=m=0.  This means we adjust the phases by  

• Then, remembering that                         we get:  222 1 mln --

wie 2



3-d to 2-d 

• The expression is still not a proper Fourier transform.    

• We can get a 2-d FT if the third term in the phase factor is sufficient small.   

 

• The third term in the phase can be neglected if it is much less than unity:   

 

 

 

• This condition holds when:                                                                          

(angles in radians!) 

 

 

• If this condition is met, then the relation between the Intensity and the 

Visibility again becomes a 2-dimensional Fourier transform: 

 



The Problem with Non-coplanar Baselines 

• Use of the 2-D transform for non-coplanar interferometer 

arrays (like the VLA, when used over time) always results in 

an error in the images.   

• The ‘Clark Condition’ for trouble is: 

 

• Hence, the problem is most acute for small-diameter 

antennas and long wavelengths.   

• The problems are not in the principles, but in the cost of the 

solutions.  Full 3-D imaging works, but isn’t cheap. 

• Various solutions are available (mosaicing, w-projection, full-

3D transforms), but discussion of these is beyond the scope 

of this talk.   
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Coverage of the U-V Plane 

• I return now to the definition of the (u,v) plane, and 
discuss the ‘coverage’.   

• Adopt the standard geometry: 

– W points to, and tracks, the phase center 

– U points to the east, V to the north.   

• To derive the values of U, V, and W, we adopt an earth-
based coordinate system for describe the antenna 
locations.   
– X points to H=0, d=0 (intersection of meridian and celestial 

equator) 

– Y points to H = -6, d = 0 (to east, on celestial equator) 

– Z points to d = 90 (to NCP).  

• Then denote by (Bx, By, Bz) the coordinates, measured in 
wavelengths, of a baseline in this earth-based frame.   

 



Array Coordinate Frame  

• (Bx, By) are the projected 
coordinates of the baseline 
(in wavelengths) on the 
equatorial plane of the earth. 

• By is the East-West 
component 

• Bz is the baseline component 
up the Earth’s rotational axis. 

X  (To H=0, d=0) 

Z (To d=90) 

Earth 

Bz 

Bx 

(A meridional plane) 
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The (u,v,w) Coordinates 

• Then, it can be shown that  

 

 

 

 

• The u and v coordinates describe E-W and N-S components of the 

projected interferometer baseline.   

• The w coordinate is the delay distance in wavelengths between the 

two antennas.    The geometric delay, tg is given by  

 

 

• Its derivative, called the fringe frequency nF is 



E-W Baseline – the simplest case 

• For an array whose elements are oriented E-W, the 

geometry is especially simple: 

– Bx = Bz = 0, so that 

 

 

 

 

• To illustrate, I show an example of a ‘minimum 

redundancy’ E-W design.   
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E-W Array Coverage and Beams 
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• Consider a ‘minimum redundancy array’, with eight antennas located at 

                   0, 1, 2, 11, 15, 18, 21 and 23 km along an E-W arm.   

                         o o o                 o       o     o     o   o 

• Of the 28 simultaneous spacings, 23 are of a unique separation.   

• The U-V coverage (over 12 hours) at d = 90, and the synthesized beam 

are shown below, for a wavelength of 1m. 



E-W Arrays and Low-Dec sources.   

• But the trouble with E-W arrays is that they are not suited for 

low-declination observing.   

• At d=0, coverage degenerates to a line.   
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Baseline Locus – the General Case 

• Each baseline, over 24 hours, traces out an ellipse in the (u,v) plane: 

 

 

• Because brightness is real, each observation provides us a second point, 

where:  V(-u,-v) = V*(u,v) 

• E-W baselines (Bx = Bz = 0) have no ‘v’ offset in the ellipses. 
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Good UV Coverage 

requires many 

simultaneous baselines 

amongst many antennas, 

or many sequential 

baselines from a few 

antennas. 

A single Visibility:  V(u,v) 

Its Complex Conjugate  

V(-u,-v) 



Getting Good Coverage near d = 0 

• The only means of getting good N-S angular resolution at 

all declinations is to build an array with N-S spacings.   

• Many more antennas are needed to provide good 

coverage for such geometries. 

• The VLA was designed to do this, using 9 antennas on 

each of three equiangular arms.   

• Built in the 1970s, commissioned in 1980, the VLA vastly 

improved radio synthesis imaging at all declinations.  

• Each of the 351 spacings traces an elliptical locus on the 

(u,v) plane.   

• Every baseline has some (N-S) component, so none of 

the ellipses is centered on the origin.   
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Sample VLA (U,V) plots for 3C147 (d = 50) 
• Snapshot (u,v) coverage for HA = -2, 0, +2  (with 26 antennas).   

Coverage over 

all four hours.   

HA = -2h HA = 2h HA = 0h 



VLA Coverage and Beams 
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      d=90                 d=60                   d=30                   d=0                   d=-30 

• Good coverage at all declinations, but troubles near d=0 remain.   



Examples of Real Visibilities from Simple 

Sources 

• I finish with some actual visibility plots from observations of 

VLA calibrator sources. 

• These plot the visibility amplitude or phase on the ‘y’ axis 

against the projected baseline,                on the ‘x’ axis.   

• It is very useful to be able to interpret these plots to aid in 

judging quality of data and calibration.   
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Example 1: – A Point Source 

• Shown are the amplitude and phase of a strong calibrator, 

J0217+738.    Not very interesting on these scales. 
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Amplitude Phase 



Zoom in … 

• Suppose we observe an unresolved object.    

• What is its visibility function? 
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Amplitude Phase 



And the Map … 

• The source is unresolved … but with a tiny background 

object.   
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• Dynamic range:  50,000:1.   

• The flux in the secondary 

object is too small to be visible in 

the visibility function.   



3C48 at 21 cm wavelength – a slightly 

resolved object.   
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Amplitude Phase 



Interpreting this Visibility Function: 

• The amplitude function tells us the source is roughly 

elliptical: 

– The 50% visibility is roughly at 200 k x 400 k, 

corresponding to 1” x 0.5” 

• The phase slope of one turn in 850 k tells us that the 

source is offset from the phase center by ~ 0.25 arcsecond. 

• But … we can’t tell the angle of the offset, or the 

orientation of the structure from these 1-d plots.   

• The few amplitude points seen above and below the 

smooth distribution result from *calibration errors*.   
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3C295 at 30 cm wavelength 

• The sinusoid of period 45 k tells us this source is comprised 

of two resolved objects, separated by 1 rad/45000 ~ 5 arcsec.   
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3C295 Image 
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• A 5-arcsecond double.  

• The phase ramp in the 

visibilities shows the 

centroid of the emission is 

slightly off the phase center.  

• Offset ~ 0.7 arcseconds.     



UV Coverage and Imaging Fidelity 

• Although the VLA represented a huge advance over what came before, 

its UV coverage (and imaging fidelity) is far from optimal. 

• The high density of samplings along the arms (the 6-armed star in 

snapshot coverage) results in ‘rays’ in the images due to small errors. 

• A better design is to ‘randomize’ the location of antennas within the 

span of the array, to better distribute the errors. 

• Of course, more antennas would really help!  :) .   

• The VLA’s wye design was dictated by its 220 ton antennas, and the 

need to move them.  Railway tracks were the only answer. 

• Future major arrays will utilize smaller, lighter elements which must not 

be positioned with any regularity.   
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