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Supplementary material   SM 1 

 

  

THEORY  

 
Summary of formulae of the gravity aspects  

 

The theory is mostly from Pedersen and Rasmussen (1990), Beiki and 

Pedersen (2010) and from our own papers/books Kalvoda et al. (2013) or 

e.g. Klokočník et al. (2017, 2020). These last two are the source for this 

Supplement. Examples follow in the second Supplement. References are 

in the main text and in (Klokočník et al. 2020). 

    The disturbing static global gravitational potential outside the masses 

of a celestial body (planets, moons) in the spherical harmonic expansion 

is given by  
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(A1) 

 

where GM is a product of the universal gravitational constant G and the 

mass M of the planet (also known from satellite analyses as the geocentric 

gravitational constant in the case of the Earth), r is the radial distance of 

an external point where T is computed, R is the radius of the planet  (which 

can be approximated by the semi-major axis of a reference ellipsoid), Pl,m 

(sin φ) are the Legendre associated functions, l and m are the degree and 

order of the harmonic expansion, (φ, λ) are the (planeto)centric latitude 

and longitude, and C’l,m and Sl,m are the harmonic geopotential coefficients 

(also known as Stokes parameters); fully normalized, C’l,m = Cl,m – Cel
l,m, 

where Cel
l,m belongs to the reference ellipsoid. The word “disturbing” here 

means the difference between the total gravitational potential of the actual 

body and the gravitational potential of a reference body, i.e. the reference 

ellipsoid, usually taken as a rotational ellipsoid with some flattening on the 

poles due to the rotation of that body.  

     A set of numbers C’l,m and Sl,m, presented to a maximum degree Lmax, is 

called the gravity/gravitational (field) model of the Earth.  (“Gravity” 
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means gravitational effect plus effect of centrifugal force of the studied 

body). 

    There is l˟ (l–1) terms in such a model, if is complete to the maximum 

degree and order l, m (or d/o) and if a few first (lowest degree) terms are 

not omitted (sometimes these terms are set at zero, due to reasons which 

will not be discussed here).  

    The gravity/ gravitational models are usually based on a great amount 

of diverse satellite and terrestrial data collected from around the world 

over a long time; then such a result is known as a high-resolution 

“combined model” (e.g., GEM 2008, Pavlis et al. 2012; EIGEN 6C4, 

Förste et al. 2014), for references see Förste et al. (2014) in contrast to 

“satellite-only models”.  

     Let us recall that C’l,m and Sl,m are considered to be constants (excluding 

a few lowest degree zonal harmonics, which have often been published 

with a secular trend and semi/annual or other time variable components). 

We speak about static gravity/gravitational models. 

     There are also variable gravity/gravitational field solutions, derived 

from the global satellite data (mainly from the GRACE mission). They are 

based on short arc solutions (from observations gathered for one month or 

a shorter interval), so they are available for a much lower Lmax than the 

static models (say to d/o = ~100 instead of ~2000), and only for the Earth. 

    The gravity/gravitational aspect is a functional/function of the gravity 

gravitational) field potential T. It can be its derivative or any other 

function, often non-linear. We work with the following gravity aspects 

(descriptors): the gravity anomaly (or disturbance) Δg, the Marussi tensor 

(Γ) of the second derivatives of the disturbing potential (Tij), two gravity 

invariants (Ij), their specific ratio (I), the strike angles (θ) and the virtual 

deformations (vd) – Klokočník et al. (2017, 2020). 

     All the gravity aspects together provide thorough information about the 

density anomaly due to the causative body that is more complete than, for 

example, information that the traditional and usual gravity anomalies 

themselves could yield. The set of gravity aspects informs about location, 

shape, orientation, a tendency to a 2D or 3D pattern, and stress tendencies 

and may partly simulate “dynamic information” although the input data 

are always the same – those harmonic geopotential coefficients C’l,m and 

Sl,m of a static gravity field model. The whole theory is arranged in such a 

way that we cannot use any input other than the harmonic coefficients of 

a gravity model. 
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    The spherical approximation of the gravity anomaly Δg (free air, 

without any geophysical model) is computed as the first radial derivative 

of T by 

 

                                      ∆𝑔 = −
𝜕𝑇

𝜕𝑟
− 2

𝑇

𝑟
 .                                         (A2)  

 

Instead of (A2), one can use the gravity disturbance, which is as (A2), but 

without the second term (often small). The gravity anomalies/disturbances 

are computed from measurements by ground, airplane or marine 

gravimeters or derived from measurements performed by means of 

satellite altimetry.  

     The gravity gradient tensor Γ (the Marussi tensor or simply the gravity 

tensor) is a tensor of the second derivatives of the disturbing potential T of 

the gravity field model. The Marussi tensor was considered the centerpiece 

of traditional differential geodesy; up to the second order this tensor 

systematically synthesizes all the dynamical and geometric properties of 

the Earth’s gravity field (see Klokočník et al., 2020 for references). 

    The tensor Γ is given in the local north-oriented reference frame (x, y, 

z), where z has the geocentric radial direction, x points to the north and y 

is directed to the west (Pedersen and Rasmussen, 1990):  
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                      (A3)         

 
  

     Outside of the body masses Γ satisfies Laplace’s differential equation, 

i.e. the trace of the Marussi tensor (A3) is zero. The tensor Γ is symmetric 

(Tyx=Txy, Tzx=Txz, Tzy=Tyz) and harmonic (Txx+Tyy+Tzz = 0); it contains nine 

components, but just five linearly independent components.  

     Gravity gradiometry is the measurements of Tij. The gravimeters 

measure the first derivative of T, i.e. the accelerations Δg, the gradiometers 

measure the second derivatives of T. From the actual formulae for their 

computation (elsewhere) one can see that the gravity gradients are more 

sensitive to the close-by mass distribution (density anomalies) than the 

gravity accelerations.  
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     Terrestrial gradiometers (torse balances) to measure Tij are known from 

geophysics (see any textbook), but they were not too successful in practical 

use (too noisy). Now, owing to technical progress, they can successfully 

be used for measurements on board of airplanes and are used for 

prospection at local scales.  

     The GOCE mission (Gravity and [steady state] Ocean Circulation 

Explorer, ESA) was the first (2009) and until now (2022) still the last 

gradiometric instrument working successfully in space on low orbit 

(measuring six of Tij components million times during its ~5-year lifetime 

at a carefully selected orbit fulfilling special criteria on orbital resonances), 

based on micro-accelerometers (a pair of them in each spatial direction 

x,y,z).   

     The Marussi tensor has already been used locally (this means in areas 

of a few per few kilometers) for petroleum, metal, diamond, groundwater, 

etc., explorations (for more information and for further references see 

Klokočník et al. 2020a).     

    The Marussi tensor is a rich source of information about density 

anomalies providing useful details about the target objects shallowly 

located beneath the Earth’s surface. This extra information can be used by 

tensor imaging techniques to enhance the source anomalies; it has been 

tested for local features (economic minerals, oil and gas deposits, fault 

location, etc.). The tensor components are used at local scales to identify 

and map the geological contact information, either the edges of the source 

targets or the structural/stratigraphic contact information. The horizontal 

components identify the shape and the geological setting of a responsible 

body. The quantity Tzz is best suited for target body detection; Tzz helps to 

define the isopath/density relationships of body mass with relation to its 

geological setting, see e.g. Saad (2006).  

     Under arbitrary coordinate transformation, any gravity field and any Γ 

have just three global gravity invariants which remain constant. Here they 

are labelled I0, I1, and I2:  

 𝑰𝟎 = 𝑡𝑟𝑎𝑐𝑒 (𝚪) 

 

and this one is zero outside the masses of the studied body (known also as 

the Laplace equation). The remaining two invariants read in general:  

       

                                I1 = ½ [trace (𝚪)2 – trace (Γ2)],   

 

                                             I2 = det (Г).  
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This can be transformed (using the components of Г in Eq. 3) to:  

 

 𝑰𝟎 = 𝑇xx + 𝑇yy + 𝑇zz 

 

                  I1 = (TxxTyy+TyyTzz+TxxTzz) – (Txy
2+Tyz

2+Txz
2) =  

                          ∑ (𝑇𝑖𝑖𝑇𝑗𝑗 − 𝑇𝑖𝑗
2)

⬚{𝑖,𝑗}∈{𝑥,𝑦,𝑧}                                          (A4)     

                    = − (Txx
2+Tyy

2+TxxTyy+Txy
2+Tyz

2+Txz
2),  

      

    I2 = det (Г) = 

       = Txx (TyyTzz –Tyz
2) + Txy (TyzTxz – TxyTzz) + Txz (TxyTyz –TxzTyy)       (A5) 

 

    The invariants are mathematically independent of the coordinate system 

chosen, so invariant (“resistant”) with respect to any rotation. The 

invariant I0 is useful for numerical checks of the actually measured Tii. The 

invariant I1 is the sum of the six products of two tensor coefficient matrix 

elements, a nonlinear functional model with regard to the geopotential 

harmonics. The invariant I2 is the determinant “det” of Γ.  

     The invariants can be looked upon as non-linear filters enhancing 

sources with big volumes (Pedersen and Rasmussen, 1990). They 

discriminate major density anomalies into separate units. It is useful and 

helpful that the resultant computed anomaly response retains the same 

shape and orientation, i.e. it is independent of the observer’s choice of 

axes; this is significant for interpretation when mapping geological 

structures. 

    Pedersen and Rasmussen (1990) showed that the ratio I of the invariants 

I1 and I2, defined as 

 

 
0 ≤ 𝐼 = −

(𝑰𝟐/𝟐)𝟐

(𝑰𝟏/𝟑)𝟑
≤ 1 ,          

 (A6) 

 

 

always lies between zero and unity for any potential field. If the causative 

body is strictly 2D (flat), then I=0. Thus, the ratio can be an indicator of 

two-dimensionality, sometimes called the “2D factor”. If I=0, then we 

have the necessary but not sufficient condition for two-dimensionality. If 

the causative body – as seen from the observation point – looks more “3D-

like” (for example, a volcano), then I grow and eventually approach 1.  

     The gradient tensor Γ contains information about subsurface strike 

(stress) directions. Pedersen and Rasmussen (1990) defined the strike 

angle θ (strike lineaments, strike direction) as follows: 
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                                 tan 2𝜃𝑠 = 2
𝑇𝑥𝑦(𝑇𝑥𝑥+𝑇𝑦𝑦)+𝑇𝑥𝑧𝑇𝑦𝑧

𝑇𝑥𝑥
2 −𝑇𝑦𝑦

2 +𝑇𝑥𝑧
2 −𝑇𝑦𝑧

2                            (A7) 

 

where θ is estimated within a multiple of π/2; and only one value represents 

the main direction of Γ. Provided that the ratio I in (A6) is small, the strike 

angle may indicate a dominant 2D structure. If one were able to rotate with 

the structure in such a way that the elements of the first row and first 

column of Γ were identically equal to zero, then one would reach a 

“correct” direction of “stress fields” described by θ (Beiki and Pedersen, 

2010).  

     Mathematically, θ is the main direction of Γ. Geophysically, it is an 

important direction for the ground structures; it may indicate areas with a 

lower porosity or “stress directions”.  

    The strike angles usually show chaotic directions. Sometimes, they are 

oriented dominantly in one prevailing direction (linearly or creating a halo 

around the object), they are aligned, combed. The combed values, mostly 

for small I (I<0.3), may signalize possible oil or gas fields, ground water, 

paleolakes or impact craters (e.g., Klokočník et al. 2020, and further 

references there).  

     The situation remains, however, not unambiguous when solely using 

the gravity data. The reason is that not only can oil and gas fields be 

detected by the combed θ but also groundwater reservoirs, water-filled 

depressions, paleolakes or stress fields after impact at and near the impact 

craters. The combed θ probably relates to changes of porosity and stresses, 

for example due to impact pressure deformations. It is evident that we need 

additional information to the gravity aspects, geological or geophysical 

information, namely magnetic anomalies, archaeological data, detailed 

surface or subglacial topography, etc.  

       Now let us define the “virtual deformation” (vd), introduced for the 

first time by Jan Kostelecký in Kalvoda et al. (2013). It is analogous to the 

tidal deformation known from geodesy and geophysics; one can imagine 

the directions of such a deformation due to “erosion” brought about solely 

by gravity.  

     If there were a tidal potential represented as in our case by T (A1), then 

horizontal shifts (deformations) would exist due to this and they could be 

expressed in the north-south direction (latitude direction) as 

 

 
𝑢Φ = 𝑙𝑆  

1

𝑔
 
𝜕𝑇

𝜕φ
 (A8) 
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and in the east-west direction (longitudinal direction) as 

 

 
𝑢Λ = 𝑙𝑆  

1

𝑔𝑐𝑜𝑠 𝜑
 
𝜕𝑇

∂λ
 (A9) 

   

where g is the gravity acceleration 9.81 ms-2, lS is the elastic coefficient 

(called the Shida number) expressing the elastic properties of the Earth as 

a planet (generally lS = 0.08), φ and λ are the geocentric latitude and 

longitude of the point P where we measure T; and the potential T is 

expressed in [m2 s-2]. In our case, T is represented by Eqs. (A1), (A8) and 

(A9). The practical problem is that the actual values of the Shida 

parameters lS for the Earth’s surface (for the specific locations) are not 

known; thus, we will know (A8) and (A9) and subsequent quantities only 

as relative values. 

    The formalism of continuum mechanics was applied to derive the main 

directions of the deformations, meaning to transform the horizontal shifts 

to a small deformation. The tensor of a small deformation E is defined as 

a gradient of the horizontal shifts (A8) and (A9): 

 

 

𝑬 = (
𝜖11 𝜖12

𝜖21 𝜖22
) = (

𝜕𝑢𝑥

𝜕𝑥

𝜕𝑢𝑥

𝜕𝑦

𝜕𝑢𝑦

𝜕𝑥

𝜕𝑢𝑦

𝜕𝑦

). (A10) 

 

The tensor E has two parts: e is the symmetrical, and Ω is the anti-

symmetrical part: 

 

 
𝑬 = 𝐞 + 𝛀 =  (eij) + (Ωij)                                 

 

(A11) 

   

 

The symmetrical tensor e reads: 

 𝐞 = (
e11 e12

e21 e22
) =

(
𝜖11 (𝜖12 + 𝜖21)/2

(𝜖12 + 𝜖21)/2 𝜖22
) , 

(A12) 

 

the parameters of deformation are:      

      

Δ = e11 + e22  total dilatation                                       (A13) 

γ1 = e11 - e22  pure cut   
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γ2 = 2e12   technical cut 

γ = (γ1
2 + γ2

2)1/2   total cut 

a = ½ (Δ + γ)   major semi-axis of the ellipse of deformation 

b = ½ (Δ – γ)   minor semi-axis of the ellipse of deformation 

α = ½ atan(γ2 /γ1)  direction of the main axis of deformation. 

 

    Note that different specialists make use of different terminology for the 

same or similar quantities quoted in (A13).  

     The derivatives of the disturbing geopotential obtained originally as the 

directional values (A8), (A9) were transformed to small positional 

deformations, or shifts. But basically, the information content of the 

Marussi tensor and of vd is the same, only exposed in different ways.  

     To illustrate vd, the semi-axes a, b of the deformation ellipse are 

computed. As we already know, the local values of lS are not known, and, 

in turn, only the main directions of vd (and not their amplitudes) can be 

computed. 

     It is very interesting and may sounds unusual that vd provide dynamical 

information, even though they are, as well as all the gravity aspects 

mentioned here, computed from static gravity models (represented by a set 

of C’l,m and Sl,m).  

     As already mentioned, the vd is analogous to the tidal deformation and 

characterizes the “tensions” (directional compression and dilatation) 

generated by the causative body (Kalvoda et al. 2013). We can understand 

the vd as a principal axis transformation from the horizontal gradients of 

the deflections of the vertical (A8) and (A9). Since the potential is forward 

modelled from the topography (at least in the case of the RET 14 model, 

see below), it is also related to curvature of topography.  

 

 

Notes to the combed strike angles 

 

    The combed strike angles are strike angles θ oriented roughly in one and 

the same direction. Here we define the combed coefficient Comb for θ as 

a measure or degree of θ being combed; it is a relative value in the interval 
〈0,1〉, where 0 means to be “not combed” (the vectors of θ are in diverse 

directions) and 1 means to be “combed” (perfectly aligned, the vectors of 

θ are oriented into one prevailing direction). They are different ways how 

to arrange such a tool.  

     The following are the input data to the statistics:  
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                                    𝜃𝑖 ∈ 〈−90°, 90°〉, 𝑖 = 1,… , 𝑛 

 

for n pixels in the studied area or zone. We compute the main direction of 

the combed θ as the mean value of 𝜃𝑖; let us denote it as 𝜃𝐶𝑜𝑚𝑏: 

 

𝜃𝐶𝑜𝑚𝑏 =
∑ 𝜃𝑖

𝑛
𝑖=1

𝑛
 

 

by choosing the angles θi either in the interval 〈−90°, 0°〉 or in the interval 
〈0°, 90°〉. We use the following important condition: 

 

∀(|𝜃𝑖 − 𝜃𝐶𝑜𝑚𝑏| > 90°): 𝜃𝑖 = 180° − |𝜃𝑖| 
 

which means that even two angles θi in opposite directions are counted as 

one direction. For example: for θComb = 80° and θi = –80°, a deviation from 

the main Comb direction is 20°. 

    Let us define a root mean square value of scatter (variance) of θi for n 

pixels as: 

 𝑟𝑚𝑠𝑣 = √
∑ (𝜃𝑖−𝜃𝐶𝑜𝑚𝑏)2𝑛

𝑖=1

𝑛
 

 

Then the required looked-for value of the main Comb direction can be 

defined as 

𝐶𝑜𝑚𝑏 = 1 −
𝑟𝑚𝑠𝑣

90°
 

 

As a measure of the degree of θ “being combed”, we make use of the 

relative values of θi: 

 

                                   𝜃𝑖
𝑟𝑒𝑙𝑎𝑡 = 1 −

𝑎𝑏𝑠(𝜃𝑖−𝜃𝐶𝑜𝑚𝑏)

90°
                              (A14) 

 

    The Comb value is shows local direction of the tested set of θi in the 

given region; the departures of the individual θi from Comb are plotted in 

a preselected optimum size of n rectangular pixels in a relative scale; these 

are the values of (A14); if some of θi fit in the main direction of Comb, 

then the pixel has the value 1; if not, then the values (A14) are in the 

interval 〈0,1〉. This serves as a simple statistical evaluation to compare 

areas with combed strike angles to those with “non-combed” strike angles.  
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    If Comb is smaller than 0.55, we say that θi of the given region are “not 

combed”; if Comb >0.65, we say θi are “combed”. There is a “grey zone” 

between the two, i.e. Comb= 0.55–0.65. 

 

         

                             Note on DATA in EIGEN 6C4 

 

The most important is the gravity field model used. We make use of a high 

resolution combined European Improved Gravity model of the Earth by 

New techniques (EIGEN 6C4, Förste et al. 2014), expanded to degree and 

order (d/o) 2190 in spherical harmonics; this corresponds to the ground 

resolution 5x5 arcmin or ~9 km on surface.  Precision of EIGEN 6C4, 

expressed in terms of Δg, is 10 mGal, but in many civilized land areas and 

over the oceans and open seas is much better. The authors of EIGEN 6C4 

have not access to most of the recent high resolution terrestrial gravity data 

on the continents, thus they took a synthesized gravity anomaly grid based 

on EGM2008 (Pavlis et al. 2012). That means that the errors for high d/o 

terms in EIGEN 6C4 are dominated by the relevant errors in EGM2008. 

To estimate the precision for the given area of interest, not only a general 

figure 10 mGal, one needs to inspect gravity anomaly commission error 

maps of EGM2008 (Pavlis, reference above, the map below). For the 

northern Yucatan peninsula, we get 4-8 mGal, for Popigai in Siberia a bit 

worse. 
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