

João Encarnação^{1,7}, Daniel Arnold², Aleš Bezděk³, Christoph Dahle^{4,2}, Junyi Guo⁵, Jose van den IJssel¹, Adrian Jäggi², Jaroslav Klokočník³, **EGUAssembly** Sandro Krauss⁶, Torsten Mayer-Gürr⁶, Ulrich Meyer² Josef Sebera³, CK Shum⁵, Pieter Visser¹, Yu Zhang⁶

 1 Delft University of Technology, the Netherlands; 2 Astronomical Institute of the Czech Academy of Sciences, Czech Republic; 4 GFZ German Research Centre for Geosciences, Germany ⁵ Ohio State University, USA; ⁶ Graz University of Technology, Austria; ⁷ University of Texas at Austin, USA

1 Introduction

Objective: Provide highest-quality monthly-independent Swarm gravity field models

Support: ESA/DISC funded project (since Sep 2017)

Rationale : Combine individual gravity solutions, computed with:

- different kinematic orbit solutions
- different inversion approaches

Product : Monthly combined Swarm gravity field models:

- period length set by the calendar month (first to last day)
- from 2013-12-01 to 2022-12-31
- available from:

-ICGEM: icgem.gfz-potsdam.de/series/02_COST-G/Swarm

Reference

Jäggi et al.

 $(2016)^1$

Zehentner and

Mayer-Gürr

 $(2016)^2$

IJssel et al.

 $(2015)^3$

-ESA: swarm-diss.eo.esa.int > Level2longterm > EGF

Citation : Teixeira da Encarnação et al. (2020)

2 **Kinematic Orbits**

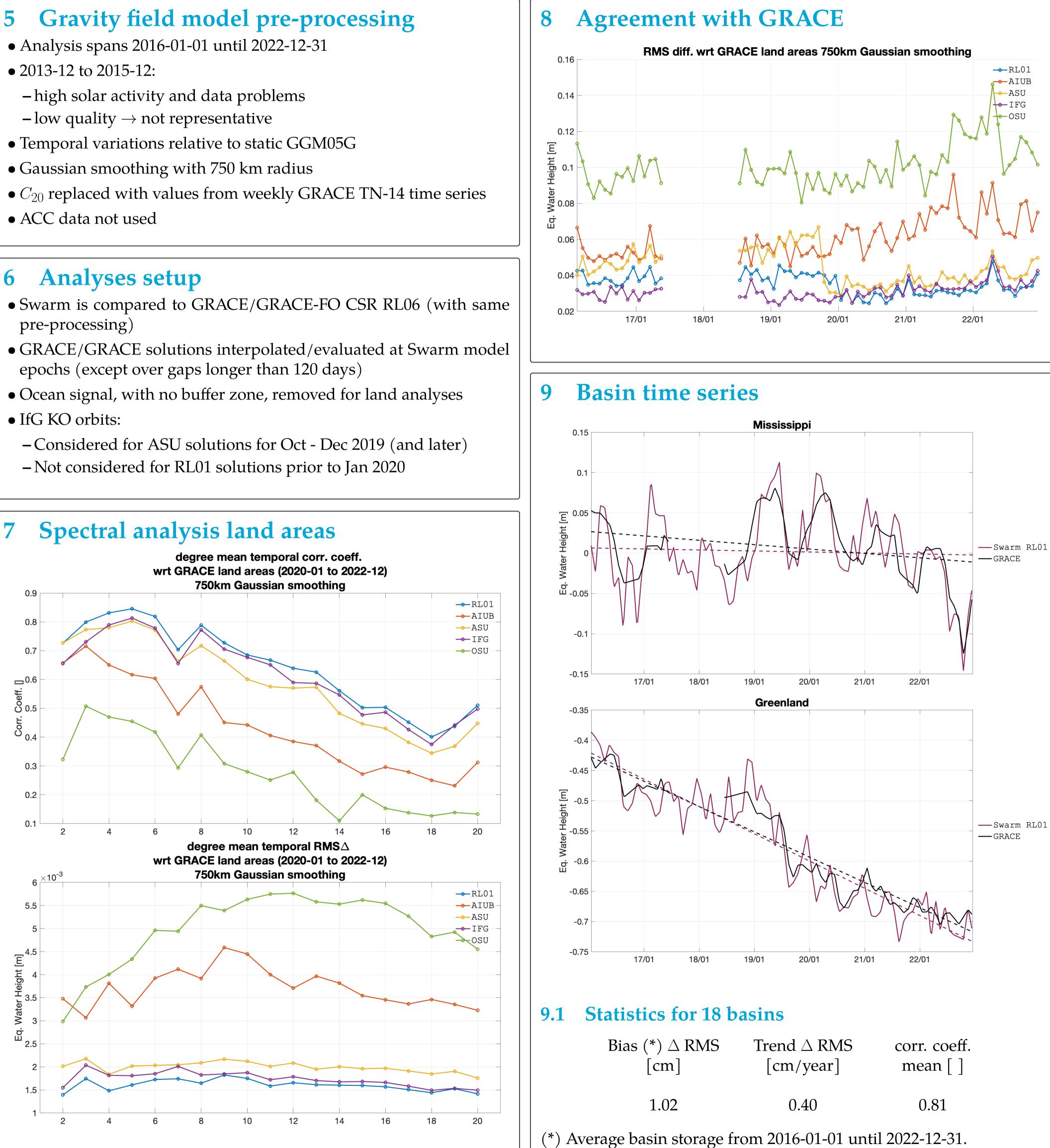
Institute	Software
AIUB	Bernese v5.3
IfG	Gravity Recovery Object Oriented Programming System (GROOPS)
TUD	GPS High precision Orbit determination Software Tool (GHOST)

¹ftp://ftp.aiub.unibe.ch/leo_orbits/swarm

²ftp://ftp.tugraz.at/outgoing/ITSG/tvgogo/orbits/Swarm ³http://earth.esa.int/web/guest/swarm/data-access

3 Individual Gravity field models

Inst.	Approach	Reference
AIUB	Celestial Mechanics Approach	Jäggi et al. (2016)
ASU	Decorrelated Acceleration Approach	Bezděk et al. (2016)
IfG	Short-Arcs Approach	Zehentner and Mayer-Gürr (2016)
OSU	Improved Energy Balance Approach	Guo et al. (2015)


4 Combined Gravity field models

• Combination at the level of solutions, up do degree 40

- Weights applied to individual solutions derived from Variance Component Estimation (VCE)
- Degrees 2-20 considered in VCE item More details: Teixeira da Encarnação and Visser (2019)

10 Conclusions

- Since January 2020:

- EqWH

- 2022

References

76640 (cit. on p. 1). (cit. on p. 1).

Acknowledgements

This research was funded by the European Space Agency (contracts SW-CO-DTU-GS-111 and SW-CN-DTU-GS-027, part of contract 4000109587/13/I-NB), partially supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDA19070302), by the National Key Research & Development Program of China (Grant 2017YFA0603103-3), by the National Natural Science Foundation of China (Grant 41584016) and by the Ministry of Education, Youth and Sports of the Czech Republic (Grant LTT18011).

Contact

• Combined model better than individual models under any metric

– IfG KO orbit processing improvements visible

– Increase in solar activity slowly degrading agreement with GRACE • Seasonal land signal clearly resolvable by Swarm:

– Temporal correlations dip under 0.5 only above degree 16

-Global spatial agreement with GRACE model at 3-4 cm RMS

– Trends over 18 analysed basins (of various sizes) agree with 4 mm/year EqWH, with temporal correlation averaging 0.81 - Abnormal mass variations well represented: Mississippi in late

Bezděk, Aleš et al. (2016). Time-variable gravity fields derived from GPS tracking of Swarm. In: Geophysical Journal International 205.3, pp. 1665—1669. doi: 10.1093/gji/ggw094 (cit. on p. 1).

Guo, J. Y. et al. (2015). On the energy integral formulation of gravitational potential differences from satellite-to-satellite tracking. In: Celestial Mechanics and Dynamical Astronomy 121.4, pp. 415–429. DOI: 10.1007/s10569-015-9610-y (cit. on p. 1).

IJssel, Jose van den et al. (2015). Precise science orbits for the Swarm satellite constellation. In: Advances in Space Research 56.6, pp. 1042– 1055. DOI: 10.1016/j.asr.2015.06.002 (cit. on p. 1).

Jäggi, A. et al. (2016). Swarm kinematic orbits and gravity fields from **18 months of GPS data**. In: *Advances in Space Research* 57.1, pp. 218– 233. DOI: 10.1016/j.asr.2015.10.035 (cit. on p. 1).

Teixeira da Encarnação, João and Pieter Visser (2019). TN-03: Swarm models validation. Tech. rep. TU Delft. DOI: 10.13140/RG.2.2.33313.

Teixeira da Encarnação, João et al. (2020). Description of the multiapproach gravity field models from Swarm GPS data. In: *Earth System Science Data* 12.2, pp. 1385–1417. DOI: 10.5194/essd-12-1385-2020

Zehentner, Norbert and Torsten Mayer-Gürr (2016). Precise orbit determination based on raw GPS measurements. In: Journal of Geodesy 90.3, pp. 275–286. DOI: 10.1007/s00190-015-0872-7 (cit. on p. 1).